(μ-C-meso-5,5,7,12,12,14-Неха-methyl-1,4,8,11-tetraazacyclotetra-decane- N-acetato- $1 \kappa^{5} N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}, O:-$ $2 \kappa O^{\prime}$)tetrachloro- $1 \kappa \mathrm{Cl}, 2 \kappa^{3} \mathrm{Cl}$ cobalt(III)zinc(II)

Kaliyamoorthy Panneerselvam, ${ }^{\text {a }}$ Tian-Huey Lu ${ }^{\text {a }}{ }^{\text {* }}$ Ta-Yung Chi, ${ }^{\text {b }}$ Shu-Fang Tung ${ }^{\text {c }}$ and Chung-Sun Chung ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China, ${ }^{\mathbf{b}}$ Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China, and ${ }^{\text {c }}$ Southern Instrument Center, National Cheng Kung University, Tainan, Taiwan 701, Republic of China
Correspondence e-mail: thlu@phys.nthu.edu.tw

Received 29 February 2000
Accepted 3 March 2000

Data validation number:
The crystal structure of the title compound, $\left[\mathrm{CoCl}\left(\mathrm{C}_{18} \mathrm{H}_{37^{-}}\right.\right.$ $\left.\left.\mathrm{N}_{4} \mathrm{O}_{2}\right)\left\{\mathrm{ZnCl}_{3}\right\}\right]$, has been determined by X-ray diffraction. C-meso-5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclo-tetradecane- N -acetate acts as a bridging ligand to coodinate with $\mathrm{Co}^{\mathrm{III}}$ and $\mathrm{Zn}^{\mathrm{II}}$ ions. The $\mathrm{Co}^{\text {III }}$ ion is six-coordinate in a nearly octahedral environment provided by one Cl atom, four N atoms of the bridging ligand, and one O atom. The $\mathrm{Zn}^{\mathrm{II}}$ ion is four-coordinate in a distorted tetrahedral environment completed by three Cl atoms and an O atom of the bridging ligand.

Comment

Metal complexes of polyaza macrocycles with additional pendant functional groups have attracted interest owing to their diverse applications in fundamental and applied science (Bernhardt \& Lawrance, 1990; Kaden, 1993). The coordination behaviour of $\mathrm{Ni}^{\mathrm{II}^{1}}$ and $\mathrm{Cu}^{\mathrm{II}}$ ions with C-meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-N-acetate has been studied chemically and crystallographically (Panneerselvam et al., 1998; Xu et al., 1988). In this study, we present the crystal structure of the title compound, (I), to expand the knowledge of this area.

The X-ray structure shows that an asymmetric unit contains two independent molecules (denoted as molecules A and B). The two molecules have almost identical bond lengths and angles. In both molecules, the C-meso-5,5,7,12,12,14-hexa-methyl-1,4,8,11-tetraazacyclotetradecane- N-acetate acts as a bridging ligand between the $\mathrm{Co}^{\mathrm{III}}$ and $\mathrm{Zn}^{\mathrm{II}}$ ions. The $\mathrm{Co}^{\mathrm{III}}$ ion is six-coordinate in a nearly octahedral environment provided

(I)
by one Cl atom, four N atoms of the bridging ligand, and one O atom. The macrocyclic moiety adopts a conformation in which the two six-membered rings are in a chair form and the two five-membered rings are in a gauche form. This combination of these four chelate rings has been found in several similar crystal stuctures (Clay et al., 1979; Panneerselvam et al., 1998; Tasker \& Sklar, 1975). The Co-N distances [1.981 (4)$2.020(5) \AA$ are longer than those in the trans-di-chloro(1,4,8,11-tetraazacyclotetradecane)cobalt(III) cation [1.978 (4) \AA; Sosa-Torres \& Toscano, 1997] and the [1,4N, N^{\prime}-bis(carboxymethyl)-1,4,8,11-tetraazacyclotetradecane]cobalt(III) cation [1.969 (4) £; Ware et al., 1996]. The Co-O distances [1.885 (4) and 1.909 (4) \AA] agree with the corresponding values found in the $\left[1,4-N, N^{\prime}\right.$-bis(carboxy-methyl)-1,4,8,11-tetraazacyclotetradecane]cobalt(III) cation [1.969 (4) \AA; Ware et al., 1996]. The $\mathrm{Co}-\mathrm{Cl}$ distances [2.219 (2) A for molecule A and 2.237 (2) \AA for molecule B] are shorter than those found in $\mathrm{Co}^{\text {III }}$ complexes such as chloro(1,5,8,11,14-pentaazacyclohexadecane)cobalt(III) diperchlorate [2.242 (9) A; Bombieri et al., 1982], chloro(1,4,7,11,14-pentaazacycloheptadecane)cobalt(III) diperchlorate [2.249 (1) \AA; Tahirov et al., 1993] and the trans-dichloro(1,4,8,11-tetraazacyclotetradecane)cobalt(III) cation [2.252 (1) A; Sosa-Torres \& Toscano, 1997].

The $\mathrm{Zn}^{\mathrm{II}}$ ion is four-coordinate in a distorted tetrahedral environment completed by three Cl atoms and an O atom of the bridging ligand. The $\mathrm{Zn}-\mathrm{O}$ bond lengths are 2.066 (4) and 2.080 (4) \AA, which are shorter than that found in ($1,4,8,11-$ tetraazacyclotetradecane- $N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}$-dihydrogentetraacetato)zinc(II) tetrahydrate [$\mathrm{Zn}-\mathrm{O} 2.127$ (1) \AA; Riesen et al. 1991], but longer than that found in dichlorobis(pyridine betaine)zinc(II) [$\mathrm{Zn}-\mathrm{O} 1.988$ (3) and 1.964 (2) \AA; Chen \& Mak, 1991]. The average $\mathrm{Zn}-\mathrm{Cl}$ bond length [2.236 (3) \AA] is shorter than that in the $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ ion found in bis(2-am-ino-4,5-dihydro- $3 \mathrm{H}^{+}$-1,3-thiazolium) tetrachlorozincate(II) [2.243 (1)-2.301 (1) Å; Kubiak \& Glowiak, 1984].

This crystal structure is stabilized by coordination bonds as well as hydrogen bonds. The hydrogen bonds between the complex cations and chloride anions are detailed in Table 2.

Experimental

$\mathrm{Na}_{3}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and the ligand C-meso-5,5,7,12,12,14-hexa-methyl-1,4,8,11-tetraazacyclotetradecane N-acetic acid were prepared according to a literature method (Bauer \& Drinkard, 1960; Xu et al., 1988). $\mathrm{Na}_{3}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~g})$ and the ligand (1.0 g) were
suspended in water (50 ml). The mixture was heated on a water bath for 2 h . An aliquot of aqueous $12 \mathrm{M} \mathrm{HCl}(4 \mathrm{ml})$ was added dropwise to the solution. The solution was heated for a further $30 \mathrm{~min}, \mathrm{NaClO}_{4}$ $(4.0 \mathrm{~g})$ was added, and the solution was cooled. The green powder obtained upon cooling was filtered off, washed with ethanol and diethyl ether, and dried in vacuo. The crystals for X-ray analysis were recrystallized from a $1 M \mathrm{ZnCl}_{2} / 2 \mathrm{MHCl}$ mixture by slow evaporation.

Crystal data

$\left[\mathrm{CoZnCl}_{4}\left(\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right]$
$M_{r}=607.62$
Triclinic, $P \overline{1}$
$a=10.242(1) \AA$
$b=10.874(2) \AA$
$c=23.168(5) \AA$
$\alpha=92.50(2)^{\circ}$
$\beta=100.39(2)^{\circ}$
$\gamma=97.60(2)^{\circ}$
$V=2509.6(8) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.608 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=6.06-15.33^{\circ} \\
& \mu=2.065 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Pillar green } \\
& 0.28 \times 0.18 \times 0.11 \mathrm{~mm}
\end{aligned}
$$

Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.656, T_{\text {max }}=0.798$
9300 measured reflections
8792 independent reflections
5321 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=25^{\circ}$
$h=-12 \rightarrow 11$
$k=0 \rightarrow 12$
$l=-27 \rightarrow 27$
3 standard reflections frequency: 60 min intensity decay: 1%
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.131$
$S=0.932$
8792 reflections
541 parameters

$\mathrm{Cl} 4 B-\mathrm{Zn} 1 B-\mathrm{Cl} 2 B$	$116.7(1)$	$\mathrm{Cl} 4 B-\mathrm{Zn} 1 B-\mathrm{Cl} 3 B$	116.8 (1)
$\mathrm{O} 2 B-\mathrm{Zn} 1 B-\mathrm{Cl} 3 B$	98.8 (1)	$\mathrm{Cl} 2 B-\mathrm{Zn} 1 B-\mathrm{Cl} 3 B$	108.7 (1)

Table 2
Hydrogen-bonding geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 A-\mathrm{H} 1 A \cdots \mathrm{Cl} 3 A$	0.91	2.53	$3.406(5)$	160
$\mathrm{~N} 3 A-\mathrm{H} 2 A \cdots \mathrm{Cl} 2 B$	0.91	2.88	$3.608(5)$	138
$\mathrm{~N} 3 A-\mathrm{H} 2 A \cdots \mathrm{Cl} 1 A$	0.91	2.54	$2.923(5)$	106
$\mathrm{~N} 4 A-\mathrm{H} 3 A \cdots \mathrm{Cl} 1 A$	0.91	2.43	$2.878(5)$	111
$\mathrm{~N} 2 B-\mathrm{H} 1 B \cdots \mathrm{Cl} 3 B$	0.91	2.53	$3.420(5)$	167
$\mathrm{~N} 3 B-\mathrm{H} 2 B \cdots \mathrm{Cl} 1 B$	0.91	2.58	$2.957(5)$	105
$\mathrm{~N} 3 B-\mathrm{H} 2 B \cdots \mathrm{Cl} 3 A^{\mathrm{i}}$	0.91	2.73	$3.454(5)$	137
$\mathrm{~N} 4 B-\mathrm{H} 3 B \cdots \mathrm{Cl} 4 B^{\mathrm{i}}$	0.91	2.87	$3.599(5)$	139
$\mathrm{~N} 4 B-\mathrm{H} 3 B \cdots \mathrm{Cl} 1 B$	0.91	2.47	$2.911(5)$	110
Symmetry code: $(\mathrm{i}) x, 1+y, z$.				

Symmetry code: (i) $x, 1+y, z$.
The maximum 2θ for data collection is 50°. The data collection would not go beyond this limit, because the crystal quality was not good. The H atoms were fixed geometrically and refined with constraint.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: NRCVAX (Gabe et al., 1989); software used to prepare material for publication: SHELXL93.

The authors thank the National Science Council for support under grants NSC89-2811-M007-018, NSC89-112-007-43 and NSC89-113-007-032.

References

Bauer, H. F. \& Drinkard, W. C. (1960). J. Am. Chem. Soc. 82, 5031-5032.
Bernhardt, P. V. \& Lawrance, G. A. (1990). Coord. Chem. Rev. 104, 297-3343. Bombieri, G., Forsellini, E., Pra, A. D., Cooksey, C. J., Humanes, M. \& Tobe, M. L. (1982). Inorg. Chim. Acta, 61, 43-49.

Chen, X.-M. \& Mak, C. W. (1991). Inorg. Chim. Acta, 182, 139-144.
Clay, R., Murray-Rust, P. \& Murray-Rust, J. (1979). J. Chem. Soc. Dalton Trans. pp. 1135-1139.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Kaden, T. A. (1993). Pure Appl. Chem. 65, 1477-1483.
Kubiak, M. \& Glowiak, T. (1984). Acta Cryst. C40, 2039-2041.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, $351-$ 359.

Panneerselvam, K., Lu, T. H., Chi, T. Y., Chung, C. S., Chen, Y. J. \& Kwan, K. S. (1998). Acta Cryst. C54, 25-27.

Riesen, A., Zehnder, M. \& Kaden, T. A. (1991). Acta Cryst. C47, 531-533.
Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.
Sosa-Torres, M. E. \& Toscano, R. A. (1997). Acta Cryst. C53, 1585-1588.
Tahirov, T. H., Lu, T. H., Chen, B. H., Lai, C. Y. \& Chung, C. S. (1993). Acta Cryst. C49, 1910-1912.
Tasker, P. A. \& Sklar, L. (1975). J. Cryst. Mol. Struct. 5, 329-344.
Ware, D. C., Tonei, D. M., Baker, L. J., Brothers, P. J. \& Clark, G. R. (1996). J. Chem. Soc. Chem. Commun. pp. 1303-1304.
Xu, J., Ni, S. \& Lin, Y. (1988). Inorg. Chem. 27, 4651-4657.

